On the copositive representation of binary and continuous nonconvex quadratic programs

نویسنده

  • Samuel Burer
چکیده

In this paper, we model any nonconvex quadratic program having a mix of binary and continuous variables as a linear program over the dual of the cone of copositive matrices. This result can be viewed as an extension of earlier separate results, which have established the copositive representation of a small collection of NP-hard problems. A simplification, which reduces the dimension of the linear conic program, and an extension to complementarity constraints are established, and computational issues are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the set-semidefinite representation of nonconvex quadratic programs over arbitrary feasible sets

In the paper we prove that any nonconvex quadratic problem over some set K ⊆Rn with additional linear and binary constraints can be rewritten as linear problem over the cone, dual to the cone of K-semidefinite matrices. We show that when K is defined by one quadratic constraint or by one concave quadratic constraint and one linear inequality, then the resulting K-semidefinite problem is actuall...

متن کامل

Quadratic factorization heuristics for copositive programming

Copositive optimization problems are particular conic programs: extremize linear forms over the copositive cone subject to linear constraints. Every quadratic program with linear constraints can be formulated as a copositive program, even if some of the variables are binary. So this is an NP-hard problem class. While most methods try to approximate the copositive cone from within, we propose a ...

متن کامل

An Adaptive Linear Approximation Algorithm for Copositive Programs

We study linear optimization problems over the cone of copositive matrices. These problems appear in nonconvex quadratic and binary optimization; for instance, the maximum clique problem and other combinatorial problems can be reformulated as such problems. We present new polyhedral inner and outer approximations of the copositive cone which we show to be exact in the limit. In contrast to prev...

متن کامل

Chapter 8 Copositive Programming

A symmetric matrix S is copositive if yT S y≥0 for all y≥0, and the set of all copositive matrices, denoted C∗, is a closed, pointed, convex cone; see [25] for a recent survey. Researchers have realized how to model many NP-hard optimization problems as copositive programs, that is, programs over C∗ for which the objective and all other constraints are linear [7, 9, 13, 16, 32–34]. This makes c...

متن کامل

Representing quadratically constrained quadratic programs as generalized copositive programs

We show that any nonconvex quadratically constrained quadratic program (QCQP) can be represented as a generalized copositive program. In fact, we provide two representations. The first is based on the concept of completely positive (CP) matrices over second order cones, while the second is based on CP matrices over the positive semidefinte cone. Our analysis assumes that the feasible region of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 120  شماره 

صفحات  -

تاریخ انتشار 2009